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An algorithm based on backward induction is devised in order to compute the optimal sequence of games to
be played in Parrondo games. The algorithm can be used to find the optimal sequence for any finite number of
turns or in the steady state, showing that ABABB… is the sequence with the highest steady state average gain.
The algorithm can also be generalized to find the optimal adaptive strategy in a multiplayer version of the
games, where a finite number of players may choose, at every turn, the game the whole ensemble should play.
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I. INTRODUCTION

Rectification of thermal fluctuations has become a major
topic in nonequilibrium statistical physics. Ajdari and Prost
�1� discovered in 1993 a Brownian ratchet mechanism, after-
wards named by Astumian and Bier the flashing ratchet �2�.
In 1996, Parrondo �3� showed that this rectification mecha-
nism also works when spatial and time degrees of freedom of
the Brownian particle are discrete, as in the chance games
thereafter known as Parrondo games �4�: two separate losing
games that can be combined following a random or periodic
strategy resulting in a winning game.

The games have received attention in several disciplines,
ranging from quantum game theory �5,6�, nonlinear or cha-
otic dynamics �7,8�, economics �9,10�, and biology �11,12�.
However, the question on how to combine the games to get
the highest increase in capital was still open. Sequences up to
period 12 have been studied using symbolic manipulators
�13�, and the periodic sequence ABABB �or any of its per-
mutations� has come up as the best in the sense that it pro-
vides the highest returns in the stationary state. In this paper
we show that ABABB… is indeed the best sequence by ap-
plying Bellman’s optimality criterion �14� and backward in-
duction.

Recently, various multiplayer versions of the games have
been proposed, giving rise to counterintuitive phenomena re-
sembling those observed in game, control, and optimization
theories or economics. For instance, it turns out that greedy
algorithms or strategies may lead to suboptimal or even los-
ing solutions �15–17�.

However, it is worth noting that, contrary to what happens
in many of the models used in economy or game theory, the
behavior of Parrondo games is of a purely stochastic nature,
therefore making them a good system to help understand the
role of fluctuations and optimization in those systems where
stochastic dynamics is relevant. As an example, it has also
been shown that a related phenomenon may occur in a feed-
back controlled collective flashing ratchet �18,19�. Also in
this context, the problem of finding an optimal protocol or
strategy in a system where fluctuations have a major role has
received attention lately in the field of finite-time thermody-
namics and fluctuation theorems �20�.

Finally, one can think of the problem of finding the best
sequence in an alternative way. Imagine an infinite number
of independent players who play against a casino with the
only restriction that all of them must play the same game �A
or B� at every turn t. That is, the decision to play A or B at t
is taken collectively. If some information about the state of
the system is known at t �we will later see which is the
information needed�, an optimal way of choosing A or B can
be found so that the average capital is the maximum pos-
sible. This is an adaptive strategy in the sense that the choice
taken can be adapted to the current state of the system; the
interested reader may find a formal proof that backward in-
duction can be used to calculate the best adaptive strategy
explicitly in Ref. �21�. It then turns out that this optimal
adaptive strategy makes the players use the sequence
ABABB… in the long run. The average capital of an infinite
ensemble of independent players is related, due to the law of
large numbers, to the average of one player playing the same
exact sequence of games. Hence this will allow us to state
that ABABB… is the best periodic sequence for the Par-
rondo games.

We thus provide an example that an open-loop control
problem �a control problem without information about the
system� can be solved as a closed-loop optimization problem
over an infinite collection of identical systems in which the
information about their state may be used, an example that
may be relevant for stochastic control theory.

The paper is organized as follows: we begin by briefly
reviewing game rules and evolution equations in Sec. II. In
Sec. III we state the problem and in Secs. IV–VI, we show
how to find the best possible sequence to play in the long run
for the original Parrondo games. In fact, the solution is more
general and consists of finding the best sequence of games
for any finite number of turns. The algorithm can be easily
generalized to find the best way of choosing games for an
arbitrary number of players �and number of turns to play�,
i.e., the best adaptive strategy for any number of players and
any number of turns; this is done in Sec. VII. Section VIII is
devoted to the application of the algorithm to the primary
Parrondo paradox. Concluding remarks can be found in Sec.
IX.

II. GAMES

Parrondo games can be stated as two simple coin tossing
games, A and B. Game A is played with a coin slightly bi-*ldinis@fis.ucm.es
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ased so that the probability to win is less than one-half, that
is pA=1 /2−�, with � a small positive number. Let X�t� be the
capital of the player in turn t. The average capital �X�t��
evolves with the number of turns as

�X�t + 1�� = �X�t�� + 2pA − 1, �1�

and therefore �X�t�� decreases with the number of turns. In
this sense, we will call the game A a losing game.
Anagolously, a winning game will be one in which �X�t��
increases with t.

Game B is played with two biased coins, say the “good”
and the “bad” coins. If the capital of the player is a multiple
of 3, she must play the bad coin, which has a probability of
winning pb=1 /10−�. Otherwise she tosses the good coin
and wins with probability pg=3 /4−�. It can be shown �22�
that these rules make B also a losing game in the long run.
The paradox arises when alternating game A and B either in
a random or periodic fashion, as this yields an average capi-
tal that increases with t, provided � is small enough.

If game B is played at turn t, the capital of the player
changes as

�X�t + 1�� = �X�t�� + 2pwinB�t� − 1, �2�

where pwinB is the probability to win in game B, which de-
pends on the capital of the player in turn t. More precisely, it
only depends on the probability �0�t� that the player has a
capital multiple of three in the tth turn. With this definition,
game B rules imply

pwinB�t� = �0�t�pb + „1 − �0�t�…pg. �3�

To compute �0�t�, one can define �1�t� and �2�t� as the
probabilities that the capital is a multiple of 3 plus 1 or plus
2, respectively, and ��t�� (�0�t� ,�1�t� ,�2�t�)t. Alterna-
tively, �X�t�� can be interpreted as the average over the popu-
lation of an infinite ensemble of independent players and
��t� as a fraction of players instead of probabilities. In either
case, the following evolution equation applies:

��t + 1� = �B��t�, with

�B = � 0 1 − pg pg

pb 0 1 − pg

1 − pb pg 0
	 . �4�

Finally, game A can be expressed in the same terms and its
evolution equation is

��t + 1� = �A��t�, where

�A = � 0 1 − pA pA

pA 0 1 − pA

1 − pA pA 0
	 . �5�

Due to normalization of probabilities, �0+�1+�2=1, so
the system state is fully determined by ��0 ,�1�. Hence the
region accessible to the system can be represented as a rect-
angular triangle of side 1 in ��0 ,�1� space.

III. PROBLEM

The expected gain g(��t�) when playing game A or B in
turn t is defined as

g„�0�t�… � �X�t + 1�� − �X�t�� , �6�

and may have two different expressions,

g„�0�t�… = 
gA if A is played at t ,

gB if B is played at t
� �7�

with

gA � 2pA − 1, �8�

gB
„�0�t�… � 2��0�t�pb + „1 − �0�t�…pg� − 1, �9�

as shown in the previous section. The total gain after T turns
of the games is

GT = �
t=1

T

g�t� �10�

and it is the target function we aim to maximize.
Let �t be a parameter that may have values A or B to

mark the game to be played at turn t, and ��1 ,�2 , . . . ,�n� a
sequence of decisions to play A or B. The problem we are
faced with can be stated in the following way.

“Find the sequence of decisions ��1 ,�2 , . . . ,�n� so that
GT attains its maximum value, with the restriction that ��t�
evolves as

��t + 1� = �A��t�, if �t = A �11�

or

��t + 1� = �B��t�, if �t = B, �12�

provided ��t� is known.”

IV. FORMAL SOLUTION

Since any decision �t affects the next, the best way to
approach this problem is by proceeding backwards. The last
decision will not affect any other, so it makes sense to start
with that one. Once we know how we should proceed when
we arrive at the last step, we can use that information to try
and find out what is the best thing to do in the last but one
turn of the games and so on.

Let us call Ĝn��� the maximum possible value of the
expected gain when there still are n turns left �26�. At this
stage, we could choose to play game A or B. If we do the
former, the state of the system changes to �A� and the gain
obtained in that step is gA. The highest expected gain attain-
able by choosing A is then

gA + Ĝn−1��A�� , �13�

because Ĝn−1��A�� is by definition the maximum gain that
can be attained provided there are n−1 turns left and the
system is in state �A�. This can be stated more formally
using Bellman’s optimality criterion which assures that “an
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optimal sequence has the property that, whatever the initial
state and decision may be, the remaining decisions constitute
an optimal sequence with respect to the state resulting from
the first decision.” �14�

If on the other hand we choose to play B when there are n
turns left, the maximum expected gain is

gB��0� + Ĝn−1��B�� . �14�

Those are the only two possibilities and therefore

Ĝn��� = max
gA + Ĝn−1��A��,gB��0� + Ĝn−1��B��� .

�15�

It is now clear that information about the state � of the
system is needed in order to maximize the gain, as stated in
the Introduction.

Given the state �, the optimal decision at turn t=T−n
+1 �n to the end� is to play A if the maximum corresponds to
the first term in expression �15� and B otherwise, so the
optimal decision �T−n+1 is A in the first case and B in the
second. Thus each point in the state space can be related
either to game A or B, creating a map that can be used at turn
T−n+1 to decide which game to play in order to have the
highest expected gain. In fact, due to linearity of the expres-
sions involved, the state space is always divided in two con-
nected regions, one for game A and the other for game B �see
Fig. 2 for some examples�.

Finally, when there is just one turn left, the best choice is
to play game A if gA�gB��0� and B otherwise �27�. Hence

Ĝ1��� = max
gA,gB��0�� , �16�

which completes the induction algorithm.

V. NUMERICAL SOLUTION

The procedure explained in the preceding section can be
readily turned into a recursive numerical algorithm to com-
pute the maximum expected gain, given a starting state of the
system ��1�. Though the algorithm is simple to program, it
requires as many operations as a brute force approach �that
is, systematic evaluation of the 2T possible sequences� due to
recursion, and what is even worse, does not provide any
information about the solution for any other initial condition
��1�. To tackle this, we used a different approach.

�1� Define a grid in space ��0 ,�1� as shown in Fig. 1.
Denote each point as ��0

i ,�1
j �, or simply �i , j�, with i, j�Z.

�2� Set n=1. Evaluate Ĝ1�i , j� in every point of the grid.

�3� Through evaluation of Ĝ1�i , j�, a map associating each
point of the grid with the optimal choice �A or B� can be
created.

�4� Increase n in one unit. Evaluate Ĝn in every point of

the grid. To do that, values of Ĝn−1 in points �A��0
i ,�1

j ,1
−�0

i −�1
j �t and �B��0

i ,�1
j ,1−�0

i −�1
j �t which fall outside the

grid would be needed. Approximate Ĝn−1 in each of those
points for the value in the closest point down-left in the grid,
whose value is already known.

�5� Evaluation of Ĝn provides a map associating each
point of the grid to the optimal choice of the game in that
point, when there are n turns remaining.

�6� Repeat steps 4 and 5 until n=T, the total number of
turns.

In step 4, Ĝn is evaluated in every point of the grid for all
n, although there is in principle no need to do so since the
mappings defined by evolution equations �4� and �5� are con-
tractive �21� and not every point can be reached by evolution

after game A or B is played. However, by computing Ĝn at
every point, we will obtain the solution not only for the
optimal sequence of length T but also of lengths T−1,T
−2, . . . in just one run of the algorithm. Moreover, all of
these solutions are valid for any initial condition.

Steps 4 and 5 are represented schematically in Fig. 1. It is
worth noting that the use of the approximation in step 4
implies the algorithm uses a time proportional to T to com-
pute the solution.

VI. RESULTS: FROM THE MAPS TO THE SEQUENCE

As an example, imagine one player who is going to play
the games four times �T=4� and whose initial capital is a
multiple of 3 ��0=1 ,�1=0�. Figure 2 shows the maps cal-
culated using the aforementioned algorithm with a grid of
2000�2000 points and �=0. For the remaining part of the
paper, I will take �=0 for simplicity. Choosing a small � may
shift the boundaries of the maps slightly. What is the se-
quence with the highest average gain provided the initial
condition is �0=1?

The map corresponding to n=4 indicates that for
��0 ,�1�= �1,0� the best choice is game A. Game A takes
��0 ,�1� from its initial value to �A�1,0 ,0�t= �0,0.5,0.5�t.
Now there are three turns left and map n=3 shows that game
B should be chosen, because �0, 0.5� falls in the region B, as
shown in Fig. 2. Game B takes the system to �0.5, 0.125� in
region A of map n=2, and finally A takes it to �0.25, 0.4375�
in region B of the last map. Therefore sequence ABAB is the
one with the highest expected gain. Proceeding in this man-
ner one can compute the optimal sequence for any number of
turns T and any initial condition.

For a finite number of turns, some sprinting behavior can
be observed that resembles the sprint effect at the beginning

A BB

AΠA

ΠB

�

�

If
︷ ︸︸ ︷

gA + Ĝn−1(0, 0) >
︷ ︸︸ ︷

gB + Ĝn−1(0, 4) ⇒ A

Otherwise ⇒ B

(i, j)

Ĝn−1(i = 0, j = 4)

Ĝn−1(i = 0, j = 0)

A or B?

π0

π1

FIG. 1. Evaluation of Ĝn��0
i ,�1

j � and computation of the opti-
mal choice of game for state ��0

i ,�1
j � with n turns left.
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and the end of the time interval in general optimization prob-
lems �15,20�. The optimal sequence usually consists of sev-
eral repetitions of the ABABB motif flanked by brief pieces
of other sequences, as, for example, optimal sequence for 21
turns with initial condition �1,0�: AB ABABBABABBA-
BABB ABBABB �the spaces have been added to help iden-
tify the different parts�.

In order to find the sequence with the highest stationary
average gain, the behavior of the maps for n�1 must be
analyzed. A regular pattern soon appears when increasing n,
and the maps describing the regions in which to play A or B
do not become completely independent of n but change pe-
riodically with n, converging to a cycle of the five different
maps depicted in Fig. 3. This means that one should follow
the prescription contained in these maps in a cyclic way and
in order of decreasing n, as indicated by the arrows in Fig. 3.

After a number of runs and irrespective of the initial con-
dition, a steady state is attained where the player ends up

playing the sequence ABABB…, and ��0 ,�1 ,�2� follows
the stationary five point cycle of this periodic sequence. The
cycle is also shown in Fig. 3. Hence sequence ABABB… is
the one with the highest average gain in the long run.

VII. FINITE NUMBER OF PLAYERS

In this section I turn to a different but related problem.
Imagine now there is a single player which is allowed to
decide whether to play A or B depending on her actual state
0, 1, or 2, as opposed to our previous problem in which the
player chose the sequence of games beforehand and had to
keep to it irrespective of the outcome of the games. Which is
the way of choosing the games so that the average gain is the
highest? The answer is quite trivial, the optimal choice can
be expressed as “every time you play, choose A if your state
is zero, B otherwise.” As stated in the Introduction, this kind
of recipe to choose the game depending on the state is usu-
ally termed a strategy. By using the former strategy, the
player completely avoids playing with the bad coin and her
average gain is maximal.

The problem becomes more interesting if a finite en-
semble of N players has to play independently against a ca-
sino with the constraint that all of them must play the same
game. Since the players will be in different states in general,
either game will be a good choice only for some part of
them. Which is then the optimal strategy? To answer this
question we can use the previous algorithm, with a slight
modification.

For a finite number of players, the state of the whole
system is given by the fraction of players in any of the three
possible states, that is, ��t�= �N0 ,N1 ,N2� /N, where Ni is the
number of players with a capital multiple of 3 plus i, and N
the total number of them. The main difference is that now
evolution of ��t� is stochastic, as opposed to the determin-
istic evolution described in Sec. II �28�. Due to normaliza-
tion, the state is sufficiently determined by (N0�t� ,N1�t�).

The expected gains for one turn gA and gB, and also

Ĝ1��0�, are defined as in the previous sections. However, to

compute Ĝn�N0 /N ,N1 /N�, we must take into account the sto-
chastic evolution of �N0 ,N1�. For example, if we start with a
distribution of capitals �N0 ,N1�= �i , j� and our first choice is
A, we will in average obtain a gain

gA + �
�k,l�

p�i,j�→�k,l�
A Ĝn−1�k/N,l/N� , �17�

where Ĝn−1 is weighted with the probability p�i,j�→�k,l�
A to

jump from state �i , j� to �k , l� in game A. An analogous ex-
pression can be written also for game B. Once the transition
probabilities are computed using the rules of the games, the
rest of the algorithm can be applied as described in Sec. V.

The results obtained for a finite number of players agree
with the currently available analytical solutions for the
steady state �up to N=3 in Ref. �23��. Furthermore, this al-
gorithm can be used to compute the solution for more than
100 players in a PC. Finally, it is worth mentioning that the
algorithm allowed us to state that it is impossible to devise a

�

�

�

�

� � � � � �

�

�

�

�

	 � � � � �

π0

π1

3 pasos

�

�

�

�

� � � � �

π1
π1

π1
π1

n = 4, t = 1 n = 3, t = 2

n = 2, t = 3

π0π0

π0 π0

n = 1, t = 4

FIG. 2. Maps and evolution for T=4, for turns t=1, 2, 3, and 4.
n=T− t+1 denotes the number of turns left. The black circles mark
the evolution of state ��0 ,�1� when playing ABAB, starting from
initial condition �1,0�.

n = 5k + 4 n = 5k + 3

n = 5k + 2n = 5k + 1n = 5k

π1
π1

π1π1π1

π0 π0

π0π0π0

FIG. 3. Stationary state maps for the optimal gain and their
corresponding limit cycle. These five maps repeat periodically for
n�1. To attain steady state, we set k�1�⇒n�1� �still many turns
left� and t�1 �many turns already played�. To obtain the optimal
sequence in the stationary state, the prescription indicated by the
maps should be followed, using each map in the order indicated by
the arrows.
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strategy that gives the optimal average gain in the steady
state irrespective of the number of players. The computation
of the optimal ones for 25 and 100 players show that they
differ in the game to be chosen at some points.

VIII. APPLICATION TO PRIMARY PARRONDO PARADOX

The algorithm can be also successfully applied to the pri-
mary Parrondo paradox �PPP� both to obtain the best a priori
sequence for a single player or the optimal strategy in the
multiplayer PPP version with “the freedom of choosing the
common next game for the players.” �24�

PPP consists also of two games, A and B, with probabili-
ties which depend in general on the capital of the player. Two
possible states are defined, capital odd or even, and there is a
probability to remain with the same capital after playing ei-
ther of the games. The probability to win, stay with same
capital, and lose are given in Table I for both games. The
state of the system is sufficiently defined giving P1, the prob-
ability that the player has an even capital. With these prob-
abilities one can show that P1=1 /3 always after playing B,
and P1=1 /2 after playing A, irrespective of the previous
state, a property known as superstability.

Due to the superstability of the PPP, which greatly sim-
plifies the behavior of the system, the optimal sequence can
be found analytically by applying Bellman’s optimality cri-
terion. The average gains in one turn are gA=0 and gB
=1 /3P1−1 /9 for game A and B, respectively. One can easily
show that

Ĝ1�P1� = �0 if P1 	
1

3
�play A�

1

3
P1 −

1

9
if P1 �

1

3
�play B� ,� �18�

Ĝ2�P1� = �0 if P1 

1

2
�play A�

1

3
P1 −

1

9
if P1 �

1

2
�play B� .� �19�

Then, Ĝ3 can be computed from Ĝ2 yielding

Ĝ3�P1� = �
1

18
if P1 	

1

3
�A�

1

3
P1 −

1

9
+

1

18
if P1 �

1

3
�B� .� �20�

Therefore Ĝ3= Ĝ1+
1

18
and Ĝ4 necessarily has the same

structure as Ĝ2, prescribing also choose A if P1
1 /2 and B

otherwise; the computation of Ĝ5 yields the same prescrip-

tion as Ĝ3, etc. Consequently, the optimal choice will only
depend on whether n is odd or even and can be expressed as

n odd ⇒ �play A if P1 	
1

3

play B if P1 �
1

3
,� �21�

n even ⇒ �play A if P1 

1

2

play B if P1 �
1

2
.� �22�

These prescriptions together with the evolution that takes P1
to 1 /3 when B is played and to 1 /2 when case A is played,
yield the sequence ABAB… as the optimal sequence, in
agreement with Ref. �24�.

Regarding the multiplayer version of the PPP with strat-
egy, the numerical algorithm was modified to take into ac-
count the different transition probabilities of the PPP and the
fact that there are only two possible states instead of three.
The optimal strategies provided by the modified algorithm
have been checked proving identical to those reported in Ref.
�25�, that is up to N=10. Moreover, using the algorithm I
was able to compute the optimal strategy up to N=100.

IX. CONCLUSIONS

Backward induction allowed us to compute the best se-
quence of games for any number of turns T in time propor-
tional to T. The algorithm shows that ABABB… is the best
periodic sequence in the long run in the original Parrondo
games. It can also be generalized to multiplayer Parrondo
games with strategy showing that the optimal strategy de-
pends on the number of players. The solution provides an
example that the optimal a priori protocol can be found by
looking at a related problem in which the protocol or strategy
may take into account the state of an infinitely large en-
semble of copies of the original system.

Furthermore, the algorithm is quite general and may be
applied to other Markov decision problems, as shown in the
section about the primary Parrondo paradox. In fact, this
algorithm can also be applied to a discretization of a stochas-
tic system continuous in time and provides an approximation
for the optimal control protocol �15�. The type of stochastic
control problems relevant to stochastic thermodynamics �20�
fit in this scheme.
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TABLE I. Probabilities to win, stay with the same capital, or
lose for games A and B in the primary Parrondo paradox.

A Win Stay Lose B Win Stay Lose

Odd 1 /4 1 /2 1 /4 Odd 1 /9 2 /3 2 /9

Even 1 /4 1 /2 1 /4 Even 4 /9 1 /3 2 /9
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